Foundations and Advances in Deep Learning

نویسنده

  • Kyunghyun Cho
چکیده

Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Kyunghyun Cho Name of the doctoral dissertation Foundations and Advances in Deep Learning Publisher Unit Department of Information and Computer Science Series Aalto University publication series DOCTORAL DISSERTATIONS 21/2014 Field of research Machine Learning Manuscript submitted 2 September 2013 Date of the defence 21 March 2014 Permission to publish granted (date) 7 January 2014 Language English Monograph Article dissertation (summary + original articles) Abstract Deep neural networks have become increasingly popular under the name of deep learning recently due to their success in challenging machine learning tasks. Although the popularity is mainly due to recent successes, the history of neural networks goes as far back as 1958 when Rosenblatt presented a perceptron learning algorithm. Since then, various kinds of artificial neural networks have been proposed. They include Hopfield networks, self-organizing maps, neural principal component analysis, Boltzmann machines, multi-layer perceptrons, radialbasis function networks, autoencoders, sigmoid belief networks, support vector machines and deep belief networks.Deep neural networks have become increasingly popular under the name of deep learning recently due to their success in challenging machine learning tasks. Although the popularity is mainly due to recent successes, the history of neural networks goes as far back as 1958 when Rosenblatt presented a perceptron learning algorithm. Since then, various kinds of artificial neural networks have been proposed. They include Hopfield networks, self-organizing maps, neural principal component analysis, Boltzmann machines, multi-layer perceptrons, radialbasis function networks, autoencoders, sigmoid belief networks, support vector machines and deep belief networks. The first part of this thesis investigates shallow and deep neural networks in search of principles that explain why deep neural networks work so well across a range of applications. The thesis starts from some of the earlier ideas and models in the field of artificial neural networks and arrive at autoencoders and Boltzmann machines which are two most widely studied neural networks these days. The author thoroughly discusses how those various neural networks are related to each other and how the principles behind those networks form a foundation for autoencoders and Boltzmann machines. The second part is the collection of the ten recent publications by the author. These publications mainly focus on learning and inference algorithms of Boltzmann machines and autoencoders. Especially, Boltzmann machines, which are known to be difficult to train, have been in the main focus. Throughout several publications the author and the co-authors have devised and proposed a new set of learning algorithms which includes the enhanced gradient, adaptive learning rate and parallel tempering. These algorithms are further applied to a restricted Boltzmann machine with Gaussian visible units. In addition to these algorithms for restricted Boltzmann machines the author proposed a twostage pretraining algorithm that initializes the parameters of a deep Boltzmann machine to match the variational posterior distribution of a similarly structured deep autoencoder. Finally, deep neural networks are applied to image denoising and speech recognition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Improving Stock Return Forecasting by Deep Learning Algorithm

Improving return forecasting is very important for both investors and researchers in financial markets. In this study we try to aim this object by two new methods. First, instead of using traditional variable, gold prices have been used as predictor and compare the results with Goyal's variables. Second, unlike previous researches new machine learning algorithm called Deep learning (DP) has bee...

متن کامل

The Affective Computing Approach to Affect Measurement

Affective computing (AC) adopts a computational approach to study affect. We highlight the AC approach towards automated affect measures that jointly model machine-readable physiological/behavioral signals with affect estimates as reported by humans or experimentally elicited. We describe the conceptual and computational foundations of the approach followed by two case studies: one on discrimin...

متن کامل

Dynamics of self-directed learning in M.Sc. nursing students: A qualitative research

Introduction: Working in the complex and ever changinghealthcare settings forces the nurses and nursing students to beequipped with lifelong learning skills. One of the lifelong learningskills is self-directed learning. This study aimed to explore theM.Sc. nursing students’ self-directed learning activities.Methods: A qualitative design using conventional content analysisapproach was used in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014